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ABSTRACT

The present paper is a modest attempt to initiate the research program outlined in this

abstract. We propose that general relativity and relativistic MOND (RelMOND) are ana-

logues of the broken electroweak symmetry. That is, SU(2)R × U(1)Y DEM → U(1)DEM

(DEM stands for dark electromagnetism), and GR is assumed to arise from the broken

SU(2)R symmetry, and is analogous to the weak force. RelMOND is identified with dark

electromagnetism U(1)DEM , which is the remaining unbroken symmetry after spontaneous

symmetry breaking of the darkelectro-grav sector SU(2)R ×U(1)Y DEM . This sector, as well

as the electroweak sector, arise from the breaking of an E8 × E8 symmetry, in a recently

proposed model of unification of the standard model with pre-gravitation, this latter being

an SU(2)R gauge theory. The source charge for the dark electromagnetic force is square-

root of mass, motivated by the experimental fact that the square-roots of the masses of the

electron, up quark, and down quark, are in the ratio 1:2:3, which is a flip of their electric

charge ratios 3:2:1 The introduction of the dark electromagnetic force helps understand the

weird mass ratios of the second and third generation of charged fermions. We also note

that in the deep MOND regime, acceleration is proportional to square-root of mass, which

motivates us to propose the relativistic U(1)DEM gauge symmetry as the origin of MOND.

We explain why the dark electromagnetic force falls inversely with distance, as in MOND,

and not as the inverse square of distance. We conclude that dark electromagnetism is a

good mimicker of cold dark matter, and the two are essentially indistinguishable in those

cosmological situations where CDM is successful in explaining observations, such as CMB

anisotropies, and gravitational lensing.
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I. INTRODUCTION

A theory of unification of the fundamental forces has recently been proposed [1], starting

from the foundational requirement that there should exist a reformulation of quantum field

theory, which does not depend on classical time [2]. This theory is based on an E8 × E8
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symmetry group, in which each of the two E8 groups is assumed to branch as follows,

as a result of a spontaneous symmetry breaking which is identified with the electroweak

symmetry breaking:

E8 −→ SU(3)× E6 −→ SU(3)× SU(3)× SU(3)× SU(3) −→ (1)

SU(3)× SU(3)× SU(3)× SU(2)× U(1) (2)

Leaving the two E6 aside for a moment, the SU(3) × SU(3) pair arising from the E8 × E8

branching is mapped to an (8+8=16) dimensional split bioctonionic space from which our

4D spacetime as well as the internal symmetry space for the standard model forces (and two

newly predicted forces) are assumed to emerge.

The three SU(3)s arising from branching of each of the two E6, with the right-most SU(3)

in each set branching as SU(2)× U(1), are interpreted as follows. In the first E6, the first

SU(3) is SU(3)genL and describes three generations of left-handed standard model fermions

(eight per generation, along with their anti-particles). The second SU(3) is associated with

SU(3)color of QCD. The branched third SU(3) → SU(2)L×U(1)Y describes the electroweak

symmetry of the standard model, broken to U(1)em.

In the second of the two E6, the first SU(3) is SU(3)genR and describes three generations

of standard model right-handed fermions including three types of sterile neutrinos (eight

fermions per generation, along with their anti-particles). The second SU(3) is identified

with a newly predicted but yet to be discovered new (likely short-range) ‘sixth force’ named

SU(3)grav. The third SU(3) → SU(2)R×U(1)Y DEM describes what we call the darkelectro-

grav sector which breaks to the newly predicted ‘fifth force’ U(1)DEM which we name dark

electromagnetism, which we propose to be the relativistic MOND theory (a gauge theory)

whose non-relativistic limit is Milgrom’s MOND [3]. The broken SU(2)R symmetry is pro-

posed to give rise to classical gravitation described by the general theory of relativity (GR).

At low accelerations, the fifth force of dark electromagnetism (DEM) dominates over GR,

whereas at high accelerations GR dominates over DEM, with the transition coming at the

critical MOND acceleration aM ∼ a0/6 ≈ cH0/6, where a0 is the cosmological acceleration

of the current accelerating universe. We reiterate that standard general relativity is assumed

to emerge from the broken SU(2)R symmetry, whereas SU(3)grav is a newly predicted un-

broken symmetry (likely short range and extremely weak, and in which the charged leptons
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and down family of quarks take part).

The particle content of this unification proposal has been described in detail in Kaushik

et al. [1]. All the 248+248=496 degrees of freedom of E8 ×E8 are accounted for. The only

fermions in the theory are three generations of standard model chiral fermions. Apart from

the 12 standard model gauge bosons, there are 12 newly predicted spin one gauge bosons

associated with the SU(3)grav × SU(2)R × U(1)Y DEM sector. Eight of these are so-called

gravi-gluons associated with the (likely to be short range, and ultra-weak compared to QCD)

SU(3)grav. The gauge boson associated with U(1)DEM is named the dark photon, and is

massless and has zero electric charge. Of the three bosons associated with the broken SU(2)R

symmetry, two have zero electric charge but are as massive as Planck mass, and hence

mediate Planck length range interaction: these are analogs of the W+ and W− bosons of the

weak force. The third is massless and has an insignificantly tiny electric charge (scaled down

enormously due to cosmological inflation, in comparison to charge of the electron) which can

be set to zero for all practical purposes. This boson is the analog of the Z0 of the weak force.

Pre-gravitation SU(2)R symmetry is mediated by spin-one gauge bosons, with gravitation

as described by the metric tensor in the general theory of relativity emerging only in the

classical limit. In our approach, classical GR is not to be quantised, which is why we do not

have a fundamental, non-composite, spin 2 graviton in the theory. This does not contradict

the fact that classical GR admits the experimentally confirmed quadrupolar gravitational

waves. The apparent spin 2 nature of gravitation is emergent only in the classical limit.

The underlying theory from which spacetime and GR emerge in the classical limit is a pre-

quantum, pre-spacetime theory. Gravitation, and quantum theory, are emergent phenomena.

There are two Higgs doublets in this theory, one being the standard model Higgs which

gives mass to left-chiral fermions upon spontaneous breaking of the electroweak symmetry.

The second, newly predicted Higgs boson gives electric charge to the right chiral fermions,

upon breaking of the darkelectro-grav symmetry, which coincides with the electroweak sym-

metry breaking. Unlike in the standard model, both the Higgs are now predicted to be com-

posite, being composed of the very fermions to which they give mass and electric charge. Of

the 496 degrees of freedom in the theory, 32 are with the bosons (after including 4 each for

the two Higgs). 32 degrees of freedom are with internal generation space and pre-spacetime

(16 each), and 144 d.o.f. are with the fermions. The remaining 288 d.o.f. go into making two

composite Higgs, 144 per Higgs. It is noteworthy that each Higgs has as many composite
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d.o.f. as the total number of d.o.f. in the fermions. The bosonic content of the theory is

confirmed also by examining the Lagrangian of the theory, as has been done in Raj and

Singh [4].

The source charge associated with U(1)em is of course the electric charge, and in the

algebraic approach to unification, it can be shown to be quantised, as was done for instance

by Furey [5]. Electric charge is defined as the number operator constructed from generators

of the Clifford algebra Cl(6), which algebra is in turn generated by octonionic chains acting

on octonions. It is shown that electric charge can only take the values (0, 1/3, 2/3, 1).

Furthermore, the spinorial states associated with these charge values exhibit the following

symmetry under the group SU(3) (which is a maximal subgroup of the smallest exceptional

group G2, the automorphism group of the octonions). The states with charges 0 and 1

are shown to be singlets of SU(3), states with charge 1/3 are anti-triplets, and states with

charge 2/3 are triplets. This enables the interpretation that the state with charge (0, 1/3,

2/3, 1) are respectively the (left-handed) neutrino, anti-down quark, up quark, and positron.

The SU(3) is hence identified with SU(3)color of QCD. Anti-particle states are obtained by

complex conjugation of particle states and are shown to have opposite sign of electric charge,

as anticipated. Note that these fermions are left-chiral particles, and their corresponding

antiparticles are right chiral. Furthermore, this quantisation of electric charge holds for every

one of the three fermion generations. The Clifford algebra construction applies equally well

to the second and to the third generation.

Consider next the symmetry SU(3)grav × U(1)DEM associated with the right handed

sector, with these two being the two new forces [1]. Now, the source charge associated with

the U(1)DEM symmetry is square-root of mass ±√
m, not electric charge. The motivation

for proposing this interpretation (for the number operator made from the Clifford algebra

Cl(6) generators which define the right-chiral fermions) comes from the following remarkable

fact [6]. The square-roots of the masses of the electron, up quark and down quark are in the

ratio 1:2:3, which is a flip of their electric charge ratios 3:2:1 We treat electric charge and

square root of mass on the same footing. Square root of mass also takes two signs: +
√
m

and −√
m. The positive sign is for matter, and negative sign is for anti-matter: like signs

attract under dark electromagnetic force, and unlike signs repel. Note that mass m, being

the square of ±√
m, is necessarily positive. Three new colors for SU(3)grav are introduced:

the right-handed neutrino and the down quark are singlets of these new colors, and have
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√
m value 0 and 1 respectively. The electron is an anti-triplet of SU(3)grav with

√
m value

1/3, and the up quark is a triplet of SU(3)grav with
√
m value 2/3. Their anti-particles

have corresponding square-root mass values −√
m. This mass quantisation is derived from

first principles, just as for electric charge quantisation, and holds for every one of the three

generations, again just like for the electric charge. Note that our proposal also gives a

dynamical definition for matter / anti-matter: matter has positive sign of square root mass

(+
√
m) and anti-matter has negative sign of square-root mass (−√

m). Mass m is of course

positive for matter as well as anti-matter, it being obtained from squaring of ±√
m.

Why then do the second and third fermion generations have such strange mass ratios, as

observed in experiments [7]? The answer is that even when we do experiments to measure

particle masses, the measurements are electromagnetic in nature, and carried out using

electric charge eigenstates. These electric charge eigenstates are not eigenstates of (square-

root) mass. The exceptional Jordan algebra associated with the three fermion generations

(one algebra for the electric charge eigenstates which are left-chiral, and one algebra for

the square-root mass eigenstates which are right chiral) can be used to express electric

charge eigenstates as superposition of square-root mass eigenstates through the so-called

Jordan eigenvalues. The weights of these superpositions reveal the observed mass ratios

to a very good accuracy [8], and strongly support the proposal that the source charge

associated with the dark electromagnetic force is square root of mass. The fact that the

source charge for the MOND acceleration is also square-root of mass encourages us to identify

dark electromagnetism with relativistic MOND.

In the very early universe, at the epoch of electroweak symmetry breaking, the enormous

repulsive dark electromagnetic force segregated matter (+
√
m) from anti-matter (−√

m), so

that our part of the matter-antimatter symmetric universe is matter dominated [4]. (This

scenario bears resemblance to the CPT symmetric universe model proposed by Boyle and

Turok [9–11].) As a result, the dark electromagnetic force in our matter-dominated universe

is apparently attractive only (even though U(1)em is a vector interaction). Similarly, the

emergent gravitational interaction which is the classical limit of the SU(2)R gauge theory,

is attractive only. We predict that the U(1)DEM force between an electron and a positron

is repulsive.

Another important aspect of the octonionic theory [2] (i.e. the one based on E8 × E8

symmetry) is the ‘square-root of spacetime’. The spinorial states which define the fermions
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and satisfy the Dirac equation are constructed from the algebra of the octonions acting on

itself. In this sense, a spinor is the square of an octonion, and since spinors are defined

on spacetime, this suggests the view that a space which is labeled by using octonions as

coordinates is actually square-root of spacetime. However, the absolute square modulus of

an octonion should be assigned dimensions of length-squared, not length (as the Lagrangian

of the octonionic theory suggests). This compels us to introduce the effective distance

R2
eff = RHR in the unbroken theory, where RH is the deSitter horizon. An unbroken

symmetry such as U(1)DEM thus ought to have a distance dependence (say in Coulomb’s

law) as 1/(
√

Reff)
2 ∼ 1/R, and not 1/R2. This is a possible explanation for the 1/R

dependence of the MOND acceleration, which taken together with the source charge for

U(1)DEM , can explain why the MOND acceleration behaves as
√
M/R, unlike gravitation

which goes as M/R2 in the Newtonian limit. We can say that gravitation is the square of

dark electromagnetism: the source current for DEM is
√
mcui whereas the source current

for gravitation is (
√
mcui)(

√
mcuj) = mc2uiuj which is nothing but the energy-momentum

tensor.

In our proposal for DEM as relativistic MOND, the DEM force mimics Maxwell’s electro-

dynamics, with electric charge replaced by square root of mass, and spatial distance replaced

by an effective distance Reff ≡
√
RRH where RH is the Hubble radius, equivalently the de-

Sitter horizon. The source term, in the non-relativistic limit, is the effective volume density

of square-root mass:
√
M/R3

eff . The left hand side of the Poisson equation is the Laplacian

made using the effective distance function. Such a Poisson equation yields MOND, in the

deep MOND regime.

As we explain in Section VI of the paper, our proposal for MOND as dark electromag-

netism also explains Verlinde’s entropic criterion [12] for MOND. Keeping this connection

with Verlinde in mind, in Section III we review Verlinde’s proposal for motivating MOND

from entropy considerations.

Since MOND has a distance dependence in the acceleration as 1/R, the associated MOND

potential is logarithmic. This is in principle consistent with the source being a surface square-

root mass density ∼
√
M/R2, as if the MOND dynamics were taking place effectively in two

spatial dimensions. This is consistent with the logarithmic form for the Green’s function

of the Laplace equation in 2D, as we recall in Section IV. Note however that this surface

density of square-root mass does not have a well-defined limit as R → 0 (it diverges as
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R−1/2), whereas the volume density of square root mass defined using the effective distance

does have a well-defined limit which is finite. Also, we would not like to modify the structure

of the left-hand side of the Poisson equation, and this is consistent with proposing MOND

as the non-relativistic limit of the U(1)DEM gauge theory.

Why do we associate the SU(2)R gauge symmetry with gravitation, as in the general

theory of relativity? The following arguments provide a number independent hints in favour

of the notion that the group SU(2)R (arising in the octonionic theory [1, 2, 4]) qualifies to

describe a theory of gravity in 4 dimensions.

In the octonionic theory there appears the product group SU(2)L × SU(2)R, where one

copy is left–handed, the other right–handed. Now SU(2)L×SU(2)R is locally isomorphic to

SO(4), the rotation group in 4 Euclidean dimensions. A Wick rotation will transform SO(4)

into the Lorentz group SO(1, 3). So the Lorentz group in 4 dimensions is locally isomorphic

to the product group SU(2)L × SU(2)R.

That the left–handed subgroup SU(2)L accounts for the weak interaction within the

standard model has been known for long. Here we claim that the right–handed subgroup

SU(2)R can account for gravity in 4 dimensions.

To see how a graviton could possibly arise in this setting, consider the tensor product

1 ⊗ 1 of 2 copies of the 3–dimensional irrep of SU(2). Now 1 ⊗ 1 = 2 ⊕ 1 ⊕ 0. The 2

representation carries spin 2 and can thus accommodate the graviton. We expect the 2 irrep

to accommodate the emergent, spin 2 graviton, with the 1 being the gravitational analogue

of the electroweak W± and Z0. The 0 irrep might be the standard model Higgs.

Moreover, Fermi’s phenomenological theory of weak interactions has a Lagrangian that

carries the Fermi constant GF multiplying the product of 2 currents; the dimension of GF

is [energy]−2. On the other hand, general relativity has a Lagangian that carries Newton’s

constant GN , the coupling constant being actually the inverse 1/GN . Incidentally the di-

mension of GN is again [energy]−2. However GN appears downstairs within its Lagrangian,

as opposed to GF which appears upstairs.

That both GF and GN are dimensionful makes the corresponding theories nonrenormal-

isable. Since the two are effective theories (low–energy limits of more fundamental theories),

nonrenormalisability is not an issue.

All these hints make one suspect that gravity and the weak force could share a common

origin, namely, the group SU(2)L ⊗ SU(2)R within the octonionic theory. That the prod-
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uct of the two coupling constants GF and 1/GN is dimensionless , suggests the intriguing

possibility that Fermi’s theory and general relativity might be each other’s dual under a Z2

duality transformation exchanging the weak and the strong coupling regimes. This duality

is strongly reminiscent of analogous dualities put forward in the literature [13, 14].

Altogether, this allows one to think of SU(2)L as the dual of the theory governed by

SU(2)R. Gravity would then appear as the weak dual of the Fermi theory, the latter being

the strong counterpart. Mention should also be made of the several attempts that have been

made in the past, on gravi-weak unification [15].

Further evidence for a possible connection between the SU(2)R gauge symmetry and

gravity comes from the work of Ashtekar [16], of Krasnov [17], and of Woit [18, 19]. There is

also the attractive fact that SU(2)R ×U(1)Y DEM (i.e. darkelectro-grav) is a renormalisable

gauge theory, just as the electroweak theory SU(2)L × U(1)Y is.

The cosmological setting for our proposal of dark electromagnetism is as follows [20]. Sub-

sequent to the big-bang creation event, the universe undergoes an inflation-like expansion.

The expansion begins with a Planck-scale acceleration ∼ 1053 cm s−2, and the acceleration

falls inversely with the expanding scale factor. One input taken from observations is that the

universe has N ∼ 1080 particles and hence a total mass of about 1055 g. The inflating epoch

undergoes a phase transition when the decreasing acceleration equals the surface gravity of

a black hole with the same mass as the mass of the observed universe. This acceleration

happens to be of the same order as the critical MOND acceleration ∼ 10−8 cm s−2, as also

the acceleration of the current universe. Hence there is an inflation of the scale factor by

61 orders of magnitude before the inflation-like phase ends. (Incidentally, this inflation by

61 orders of magnitude brings down the cosmological constant - which has dimensions of

inverse squared length - by 122 orders of magnitude, to the same order as its currently

observed value). This phase transition is also a quantum-to-classical transition, and be-

cause black hole surface gravity is now higher than the inflationary acceleration, classical

inhomogeneous structures can begin to form, and classical spacetime obeying the laws of

general relativity emerges. This transition is also the electroweak symmetry breaking and

the darkelectro-grav symmetry breaking. Near compact objects, GR as emergent from the

broken SU(2)R symmetry dominates; whereas far from compact objects (once the induced

acceleration falls below the critical MOND acceleration) the unbroken symmetry U(1)DEM

of dark electromagnetism dominates. This latter is the deep MOND regime. Thus, in the
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presence of compact objects, the deSitter horizon does not immediately yield to GR; rather

the MOND zone mediates between the GR zone and the horizon. It is as if there is a phase

transition between the GR zone and the MOND zone (similar to Verlinde’s ideas [12]). This

might be explicable via a generalisation of ‘GR as thermodynamics’ to ‘(GR + MOND) as

thermodynamics’ of an unbroken symmetry phase transforming to a broken symmetry phase.

The GR dominated phase exhibits the broken symmetry phase and is stiff; the MOND phase

is that of unbroken symmetry and is elastic - the deep MOND region carries a memory of

the unbroken inflation-like phase, and also of the currently accelerating universe.

We note that grand unification (GUTs) models based on E6 symmetry have been con-

sidered by several researchers before [21–23], and the significance of E6 has been noted

repeatedly (it is the only exceptional Lie group which has complex representations). Our

proposal, the octonionic theory, is not a GUT. We have an E6 ×E6 unification of standard

model forces with gravitation, and we predict two new forces, SU(3)grav and U(1)DEM . The

inflation-like expansion resets the scale of quantum gravity from the Planck scale to the scale

of electro-weak symmetry breaking, i.e. ∼ 1 TeV. This is also the scale of the breaking of the

darkelectro-grav symmetry SU(2)R × U(1)Y DEM , when space-time and gravitation emerge

from the pre-quantum, pre-spacetime theory. Relativistic MOND U(1)DEM also emerges at

this epoch.

The term dark electromagnetism / dark radiation / dark photon, is sometimes used to

refer to a hypothetical radiation which mediates interactions between dark matter particles.

In our proposal however, this dark radiation mediates a fifth force between ordinary baryonic

matter particles (and of course between leptons as well). There is no dark matter in our

theory, unless one wishes to refer to the dark photons of DEM as dark matter.

II. A BRIEF REVIEW OF MOND AND RELATIVISTIC MOND

The flattened rotation curves of galaxies are non-Keplerian [24], and it is observed that

departure of the rotation curve from Newtonian gravity sets in whenever the observed ac-

celeration falls below the following universal value aM [3]

aM = (1.2± 0.2)× 10−8 cm s−2, aM ≈ 1

6
a0 ≈

1

6
cH0 (3)
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where a0 is the observed cosmic acceleration. This discrepancy between Newtonian gravi-

tation and the observed rotation curves can be explained be postulating that galaxies are

surrounded by halos of dark matter. It seems difficult though to understand why the dark

matter distribution becomes important precisely below the above mentioned critical accel-

eration (instead of beyond a critical distance from the galactic centre) and why this critical

acceleration should be so close to the observed cosmic acceleration. There is also the possi-

bility that a new fundamental force (let us call it the fifth force) becomes more significant

than Newtonian gravitation, whenever the acceleration a falls much below the critical ac-

celeration aM . Keeping this in view, Milgrom proposed in 1983 that the acceleration a

experienced by a test body of mass m in the presence of a source mass M is given by the

following phenomenological law:

a = aN =
GM

R2
for a ≫ aM , a =

√
GMaM
R

for a ≪ aM (4)

In other words, the fifth force starts to dominate over Newtonian gravitation at sub-critical

accelerations. This proposal is known as Modified Newtonian Dynamics (MOND) [3]. We

do not interpret it as the breakdown of Newtonian gravitation/general relativity at low

accelerations, but rather as the fifth force dominating Newtonian gravity. The test body

of mass m universally experiences Newtonian gravity as well as the fifth force, due to the

presence of the mass M . The acceleration due to both the forces is independent of the mass

m of the test particle, but the fifth force is proportional to the square root of the source mass

M and falls inversely with distance (∼
√
M/R) as if it were the square-root of Newtonian

gravitation (∼ M/R2). Subsequently, we will view the MOND relation a2 = aNaM as a

consequence of the introduction of the effective distance R2
eff = RRH . This latter choice

makes MOND analogous to Coulomb’s law and paves the way for relativistic MOND as a

U(1) symmetry sourced by square root of mass.

An analogy could be made to the electroweak symmetry broken down to the weak force

and electrodynamics. An electron in the presence of another electron experiences both

the weak force and the much stronger Coulomb force. At energy scales approaching the

electroweak scale ∼ 1 Tev, the two forces have nearly equal strength and then get unified.

At lower energies the electric force dominates the weak force but this does not mean the weak

force law breaks down at low energies. It just means the weak force is comparatively weaker.
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Analogously, the MOND force (i.e. the fifth force) dominates over Newtonian gravity (GR)

at low accelerations, but that does not imply that GR is breaking down. In our work, MOND

is to gravitation what electrodynamics is to the weak force. Electrodynamics (MOND)

dominates over the weak force (GR) at low energies (accelerations). At high accelerations

the fifth force and GR get unified (the darkelectro-grav symmetry SU(2)R × U(1)Y DEM).

The MOND phenomenology cannot derive the interpolating function between the New-

tonian regime and the deep MOND regime: that can only come from the deeper theory from

which MOND originates. Thus one introduces the unspecified interpolation function µ(x)

relating the Newtonian acceleration aN to the MOND acceleration g as

aN = gµ(g/aM), µ(x) = 1 for x ≫ 1, µ(x) = x for x ≪ 1 (5)

If one does not wish to introduce MOND as a fifth force, it can be presented as modified

Poissonian gravity [25], by modifying the left hand side of the Poisson equation, with a =

−∇φ.

∇.[µ(|∇φ|/a0)∇φ] = 4πGρ (6)

This modified Poisson equation can be derived from the following Lagrangian [26] :

L = − 1

12πGa0

(

(∇φ)2
)3/2

+ ρφ (7)

As Khoury notes:“However, as a theory of a fundamental scalar field, the non-analytic form

of the kinetic term is somewhat unpalatable.” For the same reason one might be skeptical

about modifying the left hand side of the Poisson equation; doing so will make it harder to

relate MOND to other fundamental interactions, and to find a generalisation of GR which

reduces to MOND in the non-relativistic limit, at low accelerations. We prefer to derive

MOND from a Poisson equation in which the left hand side is intact as the conventional

Laplacian, and the right hand side is a new source charge for a fifth force.

Nonetheless, as Milgrom writes [25], and we quote:

“Very interestingly, its deep-MOND limit,

∇.[(|∇φ|)∇φ] = 4πGa0ρ (8)
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is invariant under space conformal transformations (Milgrom, 1997) [27]: Namely, beside

its obvious invariance to translations and rotations, Eqn. (8) is invariant to dilatations,

r → λr) for any constant λ > 0 [under which φ(r) → φ(r/λ)], and to inversion about a

sphere of any radius a, centered at any point r0, namely, to

r → R+
a2

|r− r0|2
(9)

with φ(r) → φ̂[r(R)], and ρ(r) → ρ̂(R) = J−1ρ[r(R)], where J is the Jacobian of the

transformation (9). This ten-parameter conformal symmetry group of Eqn. (8) is known to

be the same as the isometry (geometric symmetry) group of a 4-dimensional de Sitter space-

time, with possible deep implications, perhaps pointing to another connection of MOND

with cosmology (Milgrom, 2009a) [28].”

This important fact about MOND is very encouraging for us, because our proposed

U(1)DEM symmetry is indeed the left-over unbroken symmetry from the deSitter like phase

which precedes the darkelectro-grav symmetry breaking. This correspondence with deSitter

provides justification for use of the effective distance R2
eff = RRH , because doing so enables

the aforesaid invariance under dilatations.

MOND can also be presented as a modification of the law of inertia, instead of modifica-

tion of law of gravitation:

a =
GM

R2
for a ≫ aM ;

a2

aM
=

GM

R2
for a ≪ aM (10)

In our proposal in this paper, MOND arises from a new (fifth) force obeying a modified

law of inertia. Thus law of gravitation, as well as law of inertia, both get modified at low

accelerations.

There have been several serious attempts to develop relativistic MOND, i.e. to generalise

general relativity to a modified relativistic theory of gravitation, from which MOND will

emerge in the non-relativistic approximation, for accelerations a ≪ aM . These include

the TeVeS theory developed by Bekenstein [29], which includes a vector field and a scalar

field besides the spacetime metric. TeVeS was originally claimed to be able to explain

gravitational lensing and other cosmological observations, but is seriously constrained by

observations in the solar system and in binary stars [25]. Another prominent relativistic
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MOND has been proposed by Skordis and Zlosnik, dubbed RMOND, which is claimed to

explain CMB anisotropies and the matter power spectrum [30].

Our reservation about these otherwise noteworthy relativistic generalisations is that they

are expressly designed to meet the requirements of a relativistic MOND, and are not easy

to motivate from first principles. The vector field and scalar field introduced in TeVeS are

difficult to relate to the standard model of particle physics. The quantum field theoretic

constraints on such theories are also challenging. On the other hand, the U(1)DEM proposed

by us as RelMOND is a fallout of the E8 × E8 unification, and was not invented to explain

MOND. The use of
√
m comes from consideration of masses of quarks and leptons of the

first fermion generation. Furthermore, the SU(2)R × U(1)Y DEM gauge symmetry is likely

to be a renormalizable quantum field theory.

There is an extensive literature and review on MOND and its extensive applications; we

do not intend to review it here. The excellent SCHOLARPEDIA article by Milgrom is upto

date and reviews MOND and its applications in all its aspects [25].

We make mention though of an ongoing related research of great importance: testing the

law of gravitation in GAIA DR3 wide binaries [31–33]. A large number of such binaries are

known in the solar neighbourhood of the Milky Way, and these have orbital radii ranging

from about 200 AU to 30000 AU. The orbital acceleration crosses the critical MOND value

aM for radii around 1000 AU, transiting from the Newtonian regime (relatively low radii) to

the alleged MOND regime (large radii). Around 2000 AU onwards, the measured acceleration

should disagree with Newtonian prediction, if MOND is right. The analyses by Chae [34, 35]

and by Hernandez [36, 37] shows that Newtonian gravitation is obeyed in the not so wide

binaries, but breaks down for larger separations. Banik et al. disagree [38]. See however,

Chae’s critical response to Banik, and the responses of Lasenby, Boyle, and especially of

Hernandez, after the recent OSMU23 lecture by Banik [39]. See also the recent rebuttal by

Hernandez and Chae [40]. To our understanding, the conclusion of Chae, and of Hernandez,

that Newtonian gravitation breaks down below the critical acceleration aM , is correct. It is

remarkable that wide binaries have the same critical acceleration scale aM as spiral galaxies

do: there is no a priori reason for this to be so, unless the fifth force does indeed exist

and begins to dominate gravitation below aM . This anomaly in wide binaries cannot be

explained by dark matter; therefore wide binaries are the likely smoking gun which will

discriminate MOND from dark matter.
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III. A BRIEF REVIEW OF VERLINDE’S ENTROPIC DERIVATION OF MOND

A. Introduction

Roughly 95% of our Universe consists of a nonbaryonic form of matter/energy exhibiting

mysterious properties. This is sufficient reason to suspect that perhaps our knowledge of

gravity is incomplete. General Relativity might not be universally applicable (i.e. not in all

regimes of parameter space), and spacetime might not be an irreducible, primary concept.

Instead, our macroscopic notions of spacetime and gravity might emerge from an underlying

microscopic description.

Verlinde [12, 41] suggests that the observed dark energy and the phenomena usually

attributed to dark matter have a common origin and can both be connected to the emergent

nature of spacetime instead. The key idea is the competition between bulk degrees of freedom

and surface degrees of freedom in a de Sitter Universe containing matter:

i) when surface degrees of freedom dominate the expression for the entanglement entropy

(of spacetime plus matter), we have the standard GR regime;

ii) when bulk degrees of freedom (in the entanglement entropy) take over we enter the

MOND regime.

This state of affairs corresponds to a glassy dynamics, i.e., a mechanics for the microscopic

qubits of information in which two time scales are at work:

i) a fast, short range dynamics that is responsible for the area law for the entanglement

entropy;

ii) a slow, long distance dynamics that exhibits slow relaxation, aging and memory effects,

and is responsible for the MOND regime. This is the dark–matter phase of emergent gravity.

The transition between the two occurs precisely as one crosses the cosmological horizon

of de Sitter spacetime. Verlinde interprets this as a true phase transition in thermodynamic

sense. The thermodynamic medium here would be a d–dimensional spacetime (de Sitter

spacetime containing matter) exhibiting two phases:

i) the GR regime, corresponding to a stiff phase of this medium ;

ii) the MOND regime, corresponding to an elastic phase.

In this picture, dark matter is not to be understood as being made up of some kind of

particles. Rather, due to this phase transition in the fabric of spacetime itself, gravitational
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effects cease to be described by GR in order to exhibit MOND–like properties. GR regards

spacetime as perfectly stiff; now we see that it can have elastic properties too. MOND

is a consequence of the extremely small, but nonvanishing, elastic properties of spacetime.

The net result is that dark matter is an apparent phenomenon, as its effects can be more

economically understood in terms of the elastic properties of spacetime in this regime.

Altogether, Verlinde claims that:

i) spacetime emerges from the entanglement of qubits of information;

ii) their short–range entanglement (i.e., between neighbouring bits) produces an entropy

scaling as in the Bekenstein–Hawking area law;

iii) their long–range entanglement entropy (also called de Sitter entropy) gives rise to a

volumetric law (contrary to an area law);

iv) de Sitter entropy is equipartitioned between all bits;

v) gravity is the force that describes the change in entanglement (i.e., in spacetime) due

to matter.

B. The flattening of galaxy rotation curves

The flattening of galaxy rotation curves occurs only when the gravitational acceleration

GM/R2 drops below a certain acceleration scale aM , i.e., whenever

GM

R2
< aM (11)

Here aM is Milgrom’s acceleration scale [3, 42], related to the cosmic acceleration scale a0

as per aM = a0/6, and

a0 = cH0 ≃ 10−10 ms−2 (12)

with H0 the Hubble constant.

Denoting the observed gravitational acceleration by gobs and the acceleration due to

baryonic matter by gbar, Milgrom’s proposal is that gobs is a certain function f of gbar such

that

gobs = f(gbar) =







gbar for gbar ≫ aM
√
gbaraM for gbar ≪ aM

(13)

Eq. (13) above can be regarded as an equivalent restatement of the Tully–Fisher law.
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Altogether we have two extreme regimes:

i) when a ≫ aM we have the standard Newtonian regime;

ii) when a ≪ aM we have the MOND regime, where Newton’s second law gets modified.

In the intermediate regime a ≃ aM , MOND makes no assumptions regarding the function

f .

Verlinde’s analysis [41] applies to de Sitter (dS) spacetime, because dS is the space that

best fits our Universe according to current data. Now d–dimensional dS spacetime has the

metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2, f(r) = 1− r2

L2
. (14)

All computations are done under the assumption of spherical symmetry. At r = L there is

a cosmological horizon which carries a finite entropy and temperature. The surface acceler-

ation κ is given in terms of the Hubble parameter H0 and the Hubble scale L as

κ = cH0 =
c2

L
= a0 (15)

Then:

i) at scales much smaller than the Hubble radius L, gravity is well described by General

Relativity (GR), because the entanglement entropy follows the Bekenstein–Hawking area

law;

ii) at large distances GR breaks down and MOND sets in. This corresponds to the de

Sitter entropy (which follows a volumetric law) taking over.

Equivalently:

i) gravity at accelerations greater than aM obeys GR. Spacetime in this regime, although

dynamical, is regarded as stiff , meaning nonelastic;

ii) this is opposed to gravity at accelerations below the scale aM : in this MOND regime,

gravity is modelled in ref. [12] as being due to the elastic properties of spacetime.

In GR, the definition of mass can be problematic. Strictly speaking, the ADM mass can

only be defined at spatial infinity. However, dS spacetime has a cosmological horizon and no

spatial infinity. In dS spacetime, an approximate analogue of the ADM mass can be defined
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under some assumptions. It turns out to be given by

M = − 1

8πG

∫

S∞

φ ∂jnj dA (16)

where dA = ni dAi, ni is the outward normal vector to the surface S∞, and the latter is a

large enough spherical surface enclosing the mass M placed around the origin. This surface

S∞ must be far away from the origin, so the field produced by M can be approximately

spherically symmetric; at the same time, S∞ may not be too close to the horizon.

C. Entropy as a criterion for a phase transition

1. Entropy increase when a bit traverses a horizon

The addition or subtraction of n bits (entering the horizon or leaving it) causes an increase

or decrease ∆S in the entropy of the horizon. From Verlinde’s first paper [41] we have the

following result for the entropy increase of a horizon, as the latter is traversed by n bits of

information:
∆S

n
= −kB

∆φ

2c2
. (17)

Here kB is Boltzmann’s constant (hereafter kB = 1), and ∆φ is the difference in Newtonian

potential between the states before the n bits traverse the horizon and after traversing it.

Thus the Newtonian potential φ keeps track of the depletion of horizon entropy per bit

of information traversing it.

2. Entropy of empty dS space

De Sitter spacetime has a certain microscopic structure, the precise form of which is

unknown (and fortunately also irrelevant for our purposes). In consequence we can assign

dS spacetime an entropy. For the moment we regard dS spacetime as being empty , or devoid

of matter. The expansion of empty dS spacetime is being driven by the dark energy. Verlinde

computes the entropy of empty dS spacetime to be [12]

SDE(r) =
r

L

A(r)

4Gh̄
, A(r) = Ωd−2r

d−2 (18)

19



The subindex DE stands for dark energy . The above expresses the entropy contained within

a sphere of radius r and surface area A(r). We draw attention to the volume dependence

on the right–hand side of (18), because of the product rA(r). Happily, when evaluated at

r = L, Eq. (18) yields back the area–dependent Bekenstein–Hawking entropy. However,

SDE scales with the volume for r < L.

The entropy SDE is carried by excitations of the qubits making up empty dS space that

lift the negative groundstate energy to the positive value associated with the dark energy.

In other words, dS entropy corresponds to the dark energy that drives the expansion of the

Universe.

3. Entropy reduction of dS space due to the addition of matter

Our actual Universe is of course not empty. Applying the Bekenstein upper bound [43],

Verlinde shows that the addition of a mass M causes the entropy of dS space to decrease by

the amount

SM(r) = −2πMr

h̄
(19)

because the horizon size is being reduced. The entanglement between the two sides of the

horizon diminishes by the addition of this mass, hence the negative entropy.

4. The missing mass problem in entropic terms

We return to Eq. (11), which we would like to reexpress in entropic terms. Consider

a spherical region with boundary area A(r) = 4πr2 containing a total mass M . Then the

gravitational phenomena attributed to dark matter occur only when the area density Σ(r)

of mass falls below a universal value determined by aM :

Σ(r) =
M

A(r)
<

aM
8πG

(20)

We have replaced the condition (11), expressed in terms of accelerations, as condition (20),

expressed in terms of surface density of mass. Next we recast the same condition in terms
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of entropies. For this, we rewrite (20) more suggestively as

2πM

h̄aM
<

A(r)

4Gh̄
, (21)

We multiply through with r/L and use (15) to obtain

2πMr

h̄
<

r

L

A(r)

4Gh̄
. (22)

Finally using (18) and (19) we have

|SM(r)|< SDE(r). (23)

To summarise: the gravitational phenomena commonly attributed to dark matter occur

whenever the inequality (23) holds. The bulk entropy SDE scales with the volume, while the

matter entropy SM scales linearly with r. The observations on galaxy rotation curves tell

us that the nature of gravity changes, depending on whether the matter added to dS space

removes all or just a fraction of the entropy SDE of dS space.

Therefore we have two regimes:

i) the regime when SM(r) < SDE(r), which corresponds to low surface mass density Σ(r)

and low gravitational acceleration: this is the MOND, or sub–Newtonian, or dark matter

regime;

ii) the regime when SM(r) > SDE(r), which describes Newtonian gravity.

Verlinde’s goal is to explain why the laws of emergent gravity differ from those of General

Relativity (GR) precisely when the inequality (20) (equivalently (23)) holds. His conclusions

are:

i) at scales much smaller than the Hubble radius, gravity is well described by GR because

the entanglement entropy is still dominated by the area law of the vacuum; this is identified

as the stiff phase of spacetime;

ii) at larger distances and/or longer time scales the bulk dS entropy leads to modifications

of the above laws. Precisely when the surface mass density falls below the value (20), the

reaction force due to the thermal contribution takes over from the usual gravity governed by

the area law. This is identified as the elastic phase of spacetime, in which MOND gravity

takes over.
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5. Newtonian gravity in terms of surface densities

Motivated by the previous arguments, next we will rewrite the familiar laws of Newtonian

gravity in terms of a surface mass density vector Σ.

Given a Newtonian potential φ and the corresponding acceleration gi = −∂iφ we define

Σi =
d− 2

d− 3

gi
8πG

(24)

This is the usual gravitational acceleration vector gi, with some convenient normalisation.

The latter is so chosen that the differential expression of Gauss’ law in d–dimensional dS

spacetime now reads

∇ ·Σ = ρ (25)

That Σ qualifies as a surface mass density follows from the equivalent integral expression of

the Gauss law
∫

S
Σ · dA = M (26)

where M is the total mass enclosed by the surface S. Finally the gravitational self–energy

Ugrav of a mass distribution can also be expressed in terms of Σ:

Ugrav =
1

2

∫

dV giΣi (27)

This rewriting of Newtonian gravity in terms of surface densities will facilitate its interpre-

tation in terms of elasticity theory.

D. The elastic phase of emergent gravity

1. Elastic moduli in terms of gravitational parameters

Verlinde next proves that the ADM–like definition of mass (16) can be naturally translated

into an expression for the strain tensor. Given the Newtonian potential φ, the corresponding

elastic displacement field ui is postulated to be

ui =
φ

a0
ni (28)
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where ni is the outward unit normal to a surface S∞. The latter encloses a mass given by

M =
a0
8πG

∫

S∞

(njεij − niεjj) dAi (29)

where εij is the strain tensor for the displacement field ui. Multiplying both sides of (29) by

the acceleration scale a0 we obtain a force:

Ma0 =

∫

S∞

σijnjdAi (30)

where we have identified the stress tensor of the dark–matter elastic medium to be

σij =
a20
8πG

(εij − εkkδij) (31)

This yields the elastic moduli of the dark–matter medium:

µ =
a20

16πG
, λ = − a20

8πG
(32)

2. A derivation of the Tully–Fisher relation

Dark matter causes a gravitational pull, an acceleration gD which scales with
√
MD, the

square root of the dark mass MD. This is opposed to baryonic matter, whose acceleration

gB scales with the baryonic mass MB. Verlinde finds that in d–dimensional dS spacetime

one has the following analogue of (13):

g2D = gB aM , aM =
d− 3

(d− 2)(d− 1)
a0 (33)

When d = 4, Eq. (33) is equivalent to the Tully–Fisher relation (13). Then aM = a0/6,

which is the acceleration scale appearing in Milgrom’s phenomenological fitting formula (13).

Eq. (33) is a theoretical derivation of the phenomenological Tully–Fisher law Eq. (13).

This derivation from first principles can be seen as one of the main achievements of Verlinde’s

paper.
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3. Apparent dark matter in terms of baryonic matter

Using the previous dictionary between elastic and gravitational quantities, Verlinde de-

rives an expression for the density of apparent dark matter as a function of baryonic matter.

Namely, ΣD as a function of the baryonic Newtonian potential φB:

(

8πG

a0
ΣD

)2

=

(

d− 2

d− 1

)

1

a0
∂i (φB ni) (34)

In the spherically symmetric case, and when d = 4, the above can be integrated within a

sphere of radius R to yield

∫ R

0

GM2
D(r)

r2
dr =

1

6
MB(R)a0R (35)

where

M(R) =

∫ R

0

ρ(r)A(r) dr (36)

is the total mass inside the radius R. Eqs. (34) and (35) describe the amount of apparent

dark matter in terms of the amount of baryonic matter ; as such they allow to make direct

comparison with observations. In ref. [44] it is claimed that the agreement is good.

IV. MOND AS GRAVITY IN 2+1 DIMENSIONS

Any Riemannian manifold M has an associated Laplacian operator ∇2. The latter has

a Green function G(p, p′) satisfying the Poisson equation ∇2
pG(p, p′) = −δ(p− p′)/

√

det gp.

Thus G(p, p′) can be regarded as the Newtonian potential created at point p ∈ M by a

unit mass located at point p′ ∈ M. Now G(p, p′) becomes singular as p → p′. When M

is 2–dimensional, on general grounds we expect this singularity to be proportional to the

logarithm of d(p, p′), the geodesic distance between the two points. Here we prove this

conjecture by explicitly computing the Laplacian Green functions for the 2–dimensional

sphere and for the 2–dimensional hyperbolic space.
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A. Green’s functions for the Laplacian in two dimensions

B. The plane R
2

Given the Euclidean metric on the plane

ds2 = dr2 + r2dϕ2, (37)

where 0 < r < ∞, 0 < ϕ < 2π, the corresponding Laplacian operator reads

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
(38)

The Green function G(r, ϕ; r′, ϕ′) for a massless scalar on R
2 satisfies the equation

∇2G(r, ϕ; r′, ϕ′) =
−1

r
δ(r − r′)δ(ϕ− ϕ′) (39)

Without loss of generality we can assume r′ = 0; this point is the origin. Moreover, by

rotational symmetry, the Green function cannot depend on ϕ. We will thus denote the

Green function more simply by G(r) and look for the solution to

(

d2

dr2
+

1

r

d

dr

)

G(r) =
−1

r
δ(r) (40)

The solution reads

G(r) = [A−Θ(r)] ln r +B (41)

where Θ(r) is the Heaviside step function. We will set A = 0 = B and consider

G(r) = −Θ(r) ln r (42)

which, for r > 0, simplifies to

G(r) = − ln r (43)

Since r equals the geodesic distance between the origin and the point (r, ϕ), our statement

follows.
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C. The sphere S
2

Given the standard round metric on the unit sphere S
2,

ds2 = dθ2 + sin2 θ dϕ2, (44)

where 0 < θ < π, 0 < ϕ < 2π, the corresponding Laplacian operator reads

∇2 =
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
(45)

The Green function G(θ, ϕ; θ′, ϕ′) for a massless scalar on S
2 satisfies the equation

∇2G(θ, ϕ; θ′, ϕ′) =
−1

sin θ
δ(θ − θ′)δ(ϕ− ϕ′) (46)

Without loss of generality we can assume θ′ = 0; this point is the north pole. Moreover,

by rotational symmetry, the Green function cannot depend on ϕ. We will thus denote the

Green function more simply by G(θ) and look for the solution to

(

d2

dθ2
+ cot θ

d

dθ

)

G(θ) =
−1

sin θ
δ(θ) (47)

The change of variables x = cos θ reduces (47) to

(1− x2)g′′(x)− 2xg′(x) = δ(x) (48)

where we have set g(x) = G(θ). Eq. (48) is solved by

g(x) =
1

2
ln

(

1− x

1 + x

)

[A−Θ(x)] +B (49)

where A,B arbitrary integration constants. We may set A = B = 0 to obtain

G(θ) =
1

2
ln

(

1 + cos θ

1− cos θ

)

Θ(cos θ) (50)

as Green’s function for the Laplacian on the (upper hemisphere of the) 2–sphere, i.e., when

0 < θ < π/2; an analogous expression can be written for the lower hemisphere.
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The point θ = 0 is a singularity of G(θ): for θ → 0+ we find

G(θ) = − ln θ + . . . (51)

where the dots stand for regular terms in θ. Now, in a small neighbourhood of the point

considered, the tangent plane can be identified with the sphere. To this order of accuracy, the

Green function (51) exhibits the expected logarithmic singularity in the geodesic distance.

D. Hyperbolic space H
2

The metric on hyperbolic space H
2 is

ds2 = d̺2 + sinh2 ̺ dϕ2 (52)

where 0 < ̺ < ∞, 0 < ϕ < 2π. The corresponding Laplacian operator reads

∇2 =
∂2

∂̺2
+ coth ̺

∂

∂̺
+

1

sinh2 ̺

∂2

∂ϕ2
(53)

The Green function G(̺, ϕ; ̺′, ϕ′) for a massless scalar on H
2 satisfies the equation

∇2G(̺, ϕ; ̺′, ϕ′) =
−1

sinh ̺
δ(̺− ̺′)δ(ϕ− ϕ′) (54)

For the same reasons as above it suffices to solve the ordinary differential equation

(

d2

d̺2
+ coth ̺

d

d̺

)

G(̺) =
−1

sinh ̺
δ(̺) (55)

We apply the change of variables x = cosh ̺ to obtain

(x2 − 1)g′′(x) + 2xg′(x) = −δ(x), (56)

where we have set g(x) = G(̺). Eq. (56) coincides with (48), hence an analogue of (50)

applies:

G(̺) =
1

2
ln

(

1 + cosh ̺

1− cosh ̺

)

(57)
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Again Taylor–expanding around ̺ = 0 and dropping irrelevant constants we arrive at the

expected logarithmic singularity in the geodesic distance:

G(̺) ≃ − ln ̺+ . . . (58)

V. DARK ELECTROMAGNETISM AS THE ORIGIN OF RELATIVISTIC MOND

We demonstrate that MOND can be written as Coulomb’s law analogous to Maxwell’s

electrodynamics, by using an effective distance. Energy conservation along with a modified

inertia law can then be used to show that, written as Coulomb’s law, MOND mimics cold

dark matter, including on cosmological scales. Furthermore, in the deep MOND regime, this

formulation is the non-relativistic limit of the U(1)DEM gauge theory.

We have in the deep MOND regime that the acceleration a of a test particle in the field

of a mass M is given by

a =
√

GaM

√
M

R
=

√

LP c2aM

√

M/mP l

R
= c2

√

LP

LM

√

M/mP l

R
(59)

where aM is Milgrom’s acceleration constant; LM = c2/aM is the MOND radius.

We will assume that the MOND force F on the test particle of mass m is to be obtained

by multiplying the acceleration by
√
mmP l. We write the force in terms of dimensionless

masses, so as to try to make it look more and more like electrodynamics:

F =
√
mmP l a = mP lc

2

√

LP

LM

√

M/mP l

√

m/mP l

R
(60)

Assuming that we live in a deSitter universe, we multiply and divide by the Hubble radius

RH = cH−1
0 which is also the deSitter horizon, and we introduce the effective distance Reff

given by R2
eff ≡ RRH .

F =
√
mmP l a = mP lc

2RH

√

LP

LM

√

M/mP l

√

m/mP l

R2
eff

(61)

Now this looks like Coulumb’s law, in terms of the effective distance Reff . If a spatial point

x is at a distance |x| from the observer, it has to be stretched by a factor RH . We can

discuss the covariance of this procedure, but in a Robertson-Walker universe with cosmic
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time, this procedure seems well-defined.

We assume that the Milgrom constant aM is η times the cosmic acceleration a0 = cH0

and also that a0 = βaP l(LP/RH) is the scaling down of the Planck acceleration due to the

deSitter expansion. Thus, LM = c2/aM = c2/ηa0 = c2RH/ηβaP lLP . We can hence write

the force as

F = A

√

M/mP l

√

m/mP l

R2
eff

(62)

where

A = mP lc
√

RH

√

L2
PaP lηβ = h̄c

√

ηβRH/LP −→ A =
3

2
h̄c
√

ηβRH/LP (63)

The factor of 3/2 is deliberately introduced so as to get consistency with Verlinde’s result

and consistently derive the famous factor of 1/6 relating Milgrom’s constant to the cosmic

acceleration. We will take (62) as the defining force law of the U(1)DEM interaction, with A

as defined in (63), with the factor of 3/2 included. MOND is to be derived from this force

law, even though initially we started from MOND so as to motivate this Coulomb like force

law.

Below we consider generalising this to a fully relativistic theory for the square-root mass

current. The theory can be expected to be derivable from an action principle, just like

Maxwell electrodynamics. For now, let us continue with the spherically symmetric Coulomb

case.

This force law has an interesting parallel with, and an important difference from,

Maxwell’s electrodynamics. We can write Coulomb’s law as F = h̄c(e2/h̄c)/R2. The

charge is expressed in dimensionless units here, so a multiplication by h̄c appears, just as

for the above gravity case. However the gravitational coupling is scaled by a factor depen-

dent on epoch, via the Hubble radius (with the understanding that RH = c2/a0 and epoch

dependence, if any, would come from the in-principle-allowed time variation of the cosmic

acceleration). And gravity uses the effective distance, which is like a scaling of the actual

distance.

The force law can be derived from a potential φ via F = dφ/dReff so that

φ = −A

√

M/mP l

√

m/mP l

Reff

(64)

We would now like to write down the energy conservation equation in the deep MOND
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regime, given this potential, and from that equation derive Verlinde’s central equation (7.40)

in his paper [12]. The energy conservation equation is obtained by starting from the equation

of motion for the test mass m at R having velocity v = dR/dt.

√
m
√
mP lv̇ = − dφ

dReff
= − dR

dReff

dφ

dR
(65)

The left hand side of this equation is a modified inertia law, and in fact is such that the

MOND acceleration is independent of the square-root mass of the test particle. Thus we

still have the equivalence principle, but this time arising from cancellation of square-root

mass when the dark charge is identified with the inertial square root mass.

Multiplying both sides by v and noting that dReff/dR = RH/2Reff we can write

√
mP l

√
m

1

2

d

dt
[v2] +

2Reff

RH

d

dt
φeff = 0 (66)

If we make the crucial assumption that the time-dependence of 2Reff/RH can be ignored

this equation can be integrated to get the following expression for a conserved energy, after

substituting the form of the potential:

− 2E√
m
√
mP l

1

R2
+

Ṙ2

R2
=

6
√
Ga0η

√
M

R2
(67)

As is done in the Newtonian derivation of the Friedmann equation (converting force law

into energy conservation) we equate the right hand side term to the source term of the

Einstein equations, as if sourced by an apparent dark matter distribution MD(R) (Verlinde’s

notation).

6
√
Ga0cη

√
M

R2
= 8πGρD = 8πG

MD

4πR3/3
=

6GMD

R3
(68)

assuming a constant density and a uniform apparent dark matter distribution. Squaring

both sides gives
GM2

D

R
= ηa0MR (69)

which is consistent with Verlinde’s eqn. (7.40) in [12] if we assume η = 1/6. From here,

following Verlinde, MOND law can be easily derived.

It seems interesting that we get the same result for apparent dark matter as Verlinde
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does. This can be considered a support for the proposed U(1)DEM symmetry. Furthermore

the introduction of the effective distance can be interpreted as a stretching of the distance

R to the larger distance Reff and reminds us of an elastic medium. We should explore how

to relate our effective distance to Verlinde’s elasticity approach to MOND: the two might be

related to each other. Note that the amount of apparent dark matter MD is proportional to

the square-root of the actual matter M . We hope to derive these results from first principles

in future work.

We can also try to now prove that the total amount of apparent dark matter is about

five times ordinary matter. Verlinde’s equation (7.40) is

∫ R

0

GMD(r
′)2

R′2
=

1

6
a0M(R)R (70)

Assuming a uniform density ρD one can integrate the left hand side, after expressing mass

in terms of density, to get

GM2
D

5R
=

1

6
a0MD(R)R −→ MD =

√

5

6G

√

a0MR =

√

5

3
M (71)

The last equality follows by considering the entire universe, and writing the mass M in

terms of density, assuming critical density ρ = 3H2
0/8πG which gives H0 = 1/2GM . For R

we have assumed the value Hubble radius RH = H−1
0 which is also the deSitter horizon.

This is the contribution to apparent dark matter from the Coulomb part of the potential

energy. If we assume that each of the three vector components also contribute in equal

measure, we get that the total apparent dark matter is 4 ×
√

5/3 = 5.16 times ordinary

matter. This agrees well with the standard LCDM model according to which dark matter

to ordinary matter ratio is about 5.3.

A very important point is that only particles with non-zero rest mass take part in dark

electromagnetism, just as only particles with non-zero electric charge take part in electro-

magnetism. Hence there is no U(1)DEM interaction between photons and baryonic matter:

from this point of view the apparent dark matter derived above is a perfect mimicker of

dark matter. It will produce an additional gravitation-like attraction but it will not have

any impact on the CMB anisotropy produced by baryons interacting with electromagnetic

radiation on the last scattering surface. We can as usual study the growth of linear density
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perturbations by working with apparent density fluctuations in apparent dark matter.

Furthermore, the potential energy of the dark electromagnetic field serves as a source on

the right hand side of Einstein equations, just as cold dark matter does. Therefore, in so far

as causing gravitational lensing is concerned, the DEM field mimics cold dark matter.

The non-relativistic limit of dark electromagnetism (dark equivalent of Coulomb’s law)

proposed above is the limit of relativistic dark electromagnetism, patterned after Maxwell

electrodynamics.

We propose the following action principle for dark electromagnetism and general rela-

tivity. It is patterned entirely after the action for Maxwell’s electrodynamics coupled to

sources, in a curved spacetime. The electromagnetic field is replaced by the DEM field.

S =
c3

16πG

∫

d4x
√
−g [R−2Λ]+

∫

d4x
√
−g Lmatter−

1

16c

∫

d4x
√
−g FijF

ij+A

∫

d4x
√
−gDiJ

i

(72)

The last term couples the dark electromagnetic potential Di to the current density J i of

square-root mass, obtained by multiplying the latter by four velocity. The coupling constant

A was defined earlier in Eqn. (63), wherein RH is to be understood as RH = c2/a0. The

source for gravity is the energy-momentum tensor of mass and the energy momentum tensor

of the dark field. The dark current is given by

J i =
∑

a

√

m/mpl c√−g
δ(y− ya)

dxi

dx0
(73)

Here, the spatial distance y is the effective distance, i.e. |y|2= RH |x| and the time t = x0/c

is the cosmic time used in Robertson-Walker metric and Friedmann equations. The dark

potential is also a function of the effective spatial distance y and not of x. Thus, if we

define yi = (t,x), then Fij = ∂yiDj(y)− ∂yjDi(y). The interaction term of the dark current

does not contribute to the energy-momentum tensor which appears on the right hand side

of Einstein equations, because the
√−g in the denominator of the expression for current

density cancels the
√−g in the numerator in the expression for interaction action (last term

in action above). This is the same as in Maxwell’s electrodynamics, but in the present case

of dark electromagnetism it has profound significance. Namely, the source term for GR (it

being the energy-momentum tensor proportional to mass m) is completely distinct from

the source term for dark electromagnetism, this being the current density of square-root
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mass. Two masses m1 and m2 interact both via GR and via DEM, and one interaction

dominates over the other, depending on the magnitude of the acceleration. Furthermore,

the introduction of the effective distance in DEM and the specific use of cosmic time as time,

breaks Lorentz invariance. DEM as relativistic MOND picks up a specific reference frame,

which we take to be the rest frame of the CMB.

The second last term is the action for the DEM field, made from its field tensor, which

also couples to gravitation. Its energy-momentum tensor will contribute as a source in the

Einstein field equations. Varying the action wrt the metric gives Einstein’s field equations

sourced by dust and DEM field; varying wrt DEM field gives Maxwell-like equations coupling

DEM field to the current density of square-root mass, and varying wrt particle position

gives geodesic equation of motion, which now also includes the effect of the DEM field as

an external non-gravitational force.

More explicitly, variation of the action will give: Einstein equations

Rµν −
1

2
gµνR + Λgik =

8πG

c4
(Tµν(matter) + Tµν(DEM)) (74)

Maxwell-like equations sourced by current density of square-root mass: all written as func-

tions of the effective spatial distance, and cosmic time:

F ik
:k = −4π

c
Aji (75)

Geodesic equation, which has also an external force included (so that motion becomes

non-geodesic), with the Maxwell-like force being proportional to square-root mass (analogous

to electric charge), and a function of the effective spatial distance

mc
Dui

ds
= mc

(

dui

ds
+ Γi

klu
kul

)

=

√

m/mP l

c
AF ikuk (76)

As and when the effects of DEM are insignificant, Lorentz invariance and GR are re-

covered, as expected. These field equations will reduce (in the Newtonian approximation,

and in the homogeneous isotropic cosmological approximation) to the analysis in Section V

above.

The treatment of the exact field equations is left for future work, and if the analysis
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can be done, it might even yield the sought for interpolating function mediating Newtonian

gravitation and MOND.

Milgrom [28] writes that: “... one may conjecture that the MOND-cosmology connection

is such that local gravitational physics would take exactly the deep-MOND form in an exact

de Sitter universe. This is based on the equality of the symmetry groups of dS4 and of the

MOND limit of the Bekenstein-Milgrom formulation [45] both groups being SO(4, 1). The

fact that today we see locally a departure from the exact MOND-limit physics–i.e., that

the interpolating functions have the form they have, and that a0 is finite and serves as a

transition acceleration–stems from the departure of our actual space-time from exact dS4

geometry: The broken symmetry of our space-time is thus echoed in the broken symmetry of

local physics.” Our proposal that U(1)DEM is the remnant broken symmetry after breaking

of SU(2)R × U(1)Y DEM is entirely in support of this conjecture of Milgrom.

VI. DERIVATION OF VERLINDE’S ENTROPIC CRITERION, FROM DARK

ELECTROMAGNETISM

Consider the epoch of left-right symmetry breaking where also the SU(2)R × U(1)Y DEM

symmetry is broken. The deSitter expansion (as in the octonionic theory) ends with the for-

mation of compact objects. The U(1) symmetry remains unbroken, like in the electro-weak

sector, and becomes the U(1)DEM symmetry which we are currently examining. U(1)DEM ,

like MOND, is a scale invariant theory and carries memory of the deSitter phase. GR arises

as a result of symmetry breaking. Consider a black hole arising from spontaneous localisa-

tion, which in fact is how the deSitter expansion ends. As Verlinde shows [12], the formation

of a localised compact object reduces the deSitter entropy. The criterion for MOND to be

dominant is that this reduction in entropy (which is area proportional) is less than the vol-

ume entropy of deSitter in the volume occupied by the compact object. This is equivalent

to saying that memory of deSitter is retained under these conditions, and that U(1)DEM

dominates over GR.

We can try to derive Verlinde’s entropy criterion by starting from our U(1)DEM theory.

Let us start by asking what is the temperature of a black hole whose radius is such that its

surface gravity is less than the critical MOND acceleration? Assuming that the radius R of

the black hole is given as in GR and hence R = 2GM , the acceleration on the surface is,
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assuming that the effective radius of the black hole is Reff =
√
RRH =

√
2GMRH

a =
√

GMaM/R −→ a =
√

GMaM/Reff =
√

GMaM/
√

2GMRH ∼ a0 (77)

where we have neglected the numerical coefficient for now. The interesting point is that this

acceleration is independent of the mass of the black hole, and if we associate a temperature

with the black hole, it being proportional to the surface gravity, the temperature is a0, just as

for the deSitter horizon, and independent of the mass of the black hole. This is an example

of deSitter memory being retained in the U(1)DEM dominated deep MOND regime.

The entropy of the black hole is given by

dQ = TdS → dS = dQ/T = dM/a0 → S ∼ M/a0 (78)

which is consistent with Verlinde’s result. In the deep MOND regime, this entropy is less

than the deSitter volume entropy, directly as a consequence of our U(1)DEM theory.

VII. COUPLING CONSTANTS IN THE DARKELECTRO-GRAV THEORY

For the electroweak sector SU(2)L × U(1)Y , the derived fundamental constants are the

low energy fine structure constant αfsc ≡ e2/h̄c and the weak mixing angle (Weinberg angle)

θW , this latter being the solution of the trigonometric Eqn. (56) of our paper [4]. The fine

structure constant is made from the parameters α and L appearing in the Lagrangian of

the theory, as displayed e.g. in Eqn. (6) of the just mentioned paper. The constants of

the electroweak sector are expressible in terms of the fine structure constant and the weak

mixing angle, along with the value of the Higgs mass mH whose value is to be predicted

from cosmological downscaling (caused by the deSitter-like inflationary expansion) from the

original Planck scale value of the Higgs mass. It is significant that the standard model Higgs

comes from the right sector in the left-right symmetric model (whereas the standard model

forces arise from the left sector). The second Higgs, associated with the left sector, is a

newly predicted Higgs which is electrically charged.

Thus the weak isospin g (i.e. the SU(2)L coupling) is given by g = e/sin θW and the weak

hypercharge g′ (the U(1)Y coupling) is given by g′ = e/cos θW . The Higgs mass is estimated

as follows. When the mass ratios are computed in the octonionic theory, we assume that the
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lightest of the masses, i.e. the electron mass, is one in Planck units. (Likewise, the charge of

the down quark, it being the smallest electric charge, is set to one while determining the fine

structure constant). Hence, the Higgs mass is initially about 3×105mP ∼ 1024 GeV because

the Higgs is a composite of standard model fermions, and is expected to obtain maximum

contribution from the top quark, which at about 173 GeV is about 3 × 105 heavier than

the electron. An inflation by a factor of 1061 scales this mass down by a factor 1061/3, to

the value of about 103 GeV. This sets the weak coupling Fermi constant G0
F ∼ 1/v2 (where

v ∼ 246 GeV is the Higgs VEV), to about 10−6 GeV−2 whereas the experimentally measured

value for the Fermi constant is about 10−5 GeV−2.

This derivation of the reduced coupling constant G0
F = GF/(h̄c

3) ∼ g2/M2
W c4 helps us

arrive at a reasonable estimate of the W boson mass from first principles. We also observe

that the Fermi constant has dimensions of length squared (same as GN) and can be written

as G0
F ∼ g2(mP/mW )2m−2

P ∼ g2(mP/mW )2GN/(h̄c). The scaling down of the W mass from

its Planck scale value is responsible for the weak force becoming so much stronger than

gravitation. In this theory, GN remains unchanged with epoch.

Knowing mW , the mass of the Z boson is determined, as is conventional, by the relation

mZ = mW/cos θW . This way we have a handle on the fundamental constants and parameters

of the electroweak sector (Higgs mass, Fermi constant, fine structure constant, weak mixing

angle, masses of weak bosons, weak isospin, and hypercharge). For understanding why there

is sixty-one orders of magnitude of inflation, which ends at the electroweak scale, please see

[20] - the same result is also supported by the idea that the electroweak symmetry is broken

below a critical acceleration (see Discussion section below).

Let us now discuss the coupling constants and parameters of the right-handed darkelectro-

grav (DEM) sector, SU(2)R×U(1)Y DEM staying as close as possible to the above discussion

for electroweak sector. The DEM symmetry is broken along with the electroweak symmetry.

It can also be shown using the electric charge operator, i.e. the number operator which

is associated with the U(1)em symmetry, that W+ and W− have electric charge +1 and

−1 respectively and that Z0 is electrically neutral. The corresponding situation for the

SU(2)R×U(1)g symmetry is interesting, because here the U(1)DEM number operator defines

square root of mass (in Planck mass units); it does not define electric charge. Consequently,

W+
R and W−

R have square root mass +1 and −1 respectively, and hence their range of

interaction is limited to Planck length. They will also have an extremely tiny electric charge,

36



some seventeen orders of magnitude smaller than the charge of the electron (analogous to

the W mass being so small on the Planck scale). Whereas the U(1)Y DEM boson (and the

dark photon it transforms to) will have zero mass and zero electric charge. Z0
R will be

massless, and will have an extremely tiny electric charge (like the WR bosons). It is possible

that emergent gravitation is mediated at the quantum level by the Z0
R and the dark photon.

They take the place of the spin 2 graviton, in this theory.

The place of the fine structure constant is taken by the mass of the electron. The Weinberg

angle satisfies the same equation and hence has the same value as in the electroweak case.

Thus the right sector analogs of the couplings g and g′ can be obtained. GR is the result

of the breaking of the SU(2)R symmetry [i.e. the quantum-to-classical transition]. The

remaining unbroken symmetry is dark electromagnetism U(1)DEM which is the proposed

origin of relativistic MOND. The cosmological origin of MOND is briefly discussed in [20].

During the deSitter like inflationary phase, E8×E8 symmetry is operational, and includes

as a subset the unbroken electroweak symmetry SU(2)L ×U(1)Y as well as the darkelectro-

grav symmetry SU(2)R × U(1)Y DEM . Below the critical acceleration these symmetries are

broken, giving rise to the emergence of classical spacetime (precipitated by the localisation

of fermions). Near compact objects the gravitationally induced acceleration (GR/Newton)

is higher than the critical acceleration and GR dominates. In the far zone, the acceleration

is below the critical acceleration: this is the deep MOND regime where the unbroken sym-

metry U(1)DEM dark electromagnetism dominates. This zone is the buffer between deSitter

horizon and the GR zone, and it has been identified also in Verlinde’s work using his entropy

considerations.

All (left-handed) particles take part in the weak force, and all electrically charged particles

take part in electromagnetism. Analogously, all right-handed particles take part in the

SU(2)R interaction, whereas all particles with non-zero square-root mass take part in dark

electromagnetism.

VIII. DISCUSSION

We somehow tend to think that R is the genuine distance and that the effective distance

Reff is introduced by brute force. This need not be true, and the actual situation can be the

other way round. Let us rename the effective distance Reff as true distance Rtrue. We do that
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for the following reason. In our approach the universe begins out as a deSitter-like universe,

and the formation of structures such as black holes (GR dominated near BHs, MOND farther

out) ends the deSitter phase. Let Rtrue be the physical distance of some point, with respect

to the observer. We propose that as a result of the spontaneous localisation which causes a

classical structure such as a black hole to form, the distance Rtrue shrinks to R in the same

ratio that the Hubble radius (event horizon distance) bears to Rtrue. Therefore,

R

Rtrue
=

Rtrue

RH
(79)

This provides some physical basis, in terms of initial conditions, for using the effective

distance.

A. Critical acceleration

It has been demonstrated by earlier researchers that if an inertial observer observes a

spontaneously broken symmetry, then a Rindler observer concludes that the symmetry is

not broken, provided the acceleration is above a certain critical value. See e.g. [46] and [47].

Padmanabhan was one of the early researchers to show this result: Indeed Section 7 and in

particular Eqn. (7.15) of the work of Padmanabhan [48].

The 2017 paper [49] shows the critical acceleration for the electroweak case: This result

appears significant for what we are doing with dark electromagnetism arising from the

breaking of SU(2)R×U(1)Y DEM , in the early universe. It helps understand that classicality

and GR emerge as a result of the acceleration of the universe coming down below the critical

value. This critical value happens to be the same as the current acceleration of the universe.

These results could have important implications in early universe cosmology. In partic-

ular, it could be that the electroweak symmetry breaks when the acceleration of a quasi-

deSitter expanding universe falls below a critical value (assuming the inflation-like phase

ends at the electroweak scale).

In our research we are investigating if Milgrom’s MOND arises as the result of breaking

of an SU(2)R×U(1)Y DEM symmetry, which is the right-handed counterpart of electroweak.

After spontaneous symmetry breaking the U(1) becomes U(1)DEM , which is dark electro-

magnetism. We are looking into whether this fifth force is an alternative to dark matter, and

38



the sought for theoretical basis of MOND. The critical acceleration result could be relevant

in establishing the SSB criterion.

B. Limiting values

Consider the quantity:
√
M

R3

eff
which can be expanded around a spatial point as

√
ρ0R3

R3/2R
3/2
H

which has the finite limit
√

ρ0/R3
H . This reinforces the use of the effective distance. In a

non-spherical situation the effective distance between two spatial points (having coordinate

difference x− x′) is defined by new coordinates y − y′ such that |y− y′|2eff= RH |x− x′|

C. Advantages in considering dark electromagnetism

We summarise here some of the key advantages of U(1)DEM symmetry:

1. It arises from first principles from E8 × E8 theory.

2. It is a relativistic gauge theory.

3. It is plausible that the unbroken SU(2)R × U(1)Y DEM symmetry is renormalizable,

and is the correct theory of quantum gravity.

4. U(1)DEM is sourced by square root of mass, just as desired by MOND.

5. Only particles with non-zero rest mass take part in U(1)dem. A photon does not

interact with matter through U(1)DEM . Therefore the additional force created by the baryon

- U(1)DEM interaction is the perfect dark matter mimicker. It will explain CMB anisotropies

for the same reason that dark matter explains CMB anisotropies. It will also mimic dark

matter vis a vis gravitational lensing.

6. There is a natural connection with deSitter because U(1)DEM is the leftover unbroken

symmetry from deSitter.

7. We are able to derive Verlinde’s results for apparent dark matter and entropy criterion

for MOND

8. Earlier researchers have demonstrated that the electroweak symmetry is broken below

a certain critical acceleration, and restored above it. The same result can be expected to hold

for its right-handed counterpart, this being our GR-DEM theory. Analogous to electro-weak,

we could call it darkelectro-grav.

The dark photon - the gauge boson that mediates quantised DEM, could be thought of
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as dark matter. Its detection in the laboratory may however be beyond current technology.

Same could be said about dark electromagnetic waves, though they could well be the early

dark radiation [50, 51] that has been proposed as one possible solution to the Hubble tension.

Even though the dark photon can be called the sought for dark matter, what is noteworthy is

that the associated DEM field is MONDian in character, and we have a newly predicted fifth

force mimicking dark matter, but not a new fermionic elementary particle as dark matter.

From the point of view of fundamental physics, this difference (i.e. is dark matter fermionic

or bosonic) is significant. It decides whether there are only four fundamental forces, or more

than four.
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